Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 40(2): 225-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606451

RESUMEN

The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

2.
Molecules ; 29(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338462

RESUMEN

Tuberculosis is one of the most common infectious diseases in the world, caused by Mycobacterium tuberculosis. The outbreak of multiple drug-resistant tuberculosis has become a major challenge to prevent this disease worldwide. ClpC1 is a Clp ATPase protein of Mycobacterium tuberculosis, functioning as a chaperon when combined with the Clp complex. ClpC1 has emerged as a new target to discover anti-tuberculosis drugs. This study aimed to explore the ClpC1 inhibitors from actinomycetes, which have been known to provide abundant sources of antibiotics. Two cyclic peptides, including nocardamin (1), halolitoralin A (3), and a lactone pleurone (2), were isolated from the culture of Streptomyces aureus (VTCC43181). The structures of these compounds were determined based on the detailed analysis of their spectral data and comparison with references. This is the first time these compounds have been isolated from S. aureus. Compounds 1-3 were evaluated for their affection of ATPase activity of the recombinant ClpC1 protein. Of these compounds, halolitoralin A (1), a macrocyclic peptide, was effective for the ATPase hydrolysis of the ClpC1 protein.


Asunto(s)
Mycobacterium tuberculosis , Streptomyces , Staphylococcus aureus/metabolismo , Antituberculosos/farmacología , Antituberculosos/metabolismo , Proteínas Bacterianas/química , Adenosina Trifosfatasas/metabolismo
3.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36256451

RESUMEN

A novel bacterial strain, N4T, was isolated from the soil of a groundnut Arachis hypogaea field in Nghean province, Vietnam. The phylogenetic, chemotaxonomic and phenotypic characteristics of this strain were determined. Cells of strain N4T were Gram-negative, aerobic, endospore-forming and rod-shaped. Strain N4T grew at 20-37 °C (optimum, 30 °C), pH 6-10 (optimum, pH 7) and 0-5 % NaCl (optimum, 0 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain N4T belonged to the genus Paenibacillus and was closely related to Paenibacillus harenae B519T (=KCTC 3951T) and Paenibacillus alkaliterrae KSL-134T (=KCTC 3956T) with 96.3 and 96.5% gene sequence similarity, respectively. It contained meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 52.9 mol%. The major isoprenoid quinone was MK-7. Anteiso-C15 : 0 and iso-C16 : 0 were the dominant cellular fatty acids. Based on phylogenetic, physiological and biochemical characteristics, strain N4T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus vietnamensis sp. nov. is proposed. The type strain is N4T (=KCTC 33932T= VTCC 12236T).


Asunto(s)
ADN Bacteriano , Paenibacillus , Rizosfera , ARN Ribosómico 16S/genética , Arachis , Filogenia , Ácido Diaminopimélico/química , Peptidoglicano/química , Suelo , Cloruro de Sodio , Microbiología del Suelo , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Ácidos Grasos/química , Quinonas , Terpenos
4.
Sci Rep ; 12(1): 15203, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075953

RESUMEN

Quorum sensing is the process by which microbial cells sense and respond to the co-presence of others in their surrounding, through the detection of their autoinducers associated with gene expression regulation and thereby controlling many physiological processes, such as biofilm formation and/or bioluminescence, etc. In Vibrio bacteria, where quorum sensing is relatively well understood with three commonly known autoinducers (HAI-1, AI-2 and CAI-1), both intra-species and inter-species cell-cell communications occur but no inter-Vibrio-species quorum sensing inhibition has been reported. In this study, by screening bacterial isolated from soil and mud samples in a northern province in Vietnam, we discovered a strain that reduced more than 75% of the bioluminescence of a Vibrio harveyi, with evidence showing that such an inhibition might be associated with quorum sensing inhibition. The strain, designated as XTS1.2.9, was identified to be a Vibrio parahaemolyticus bacterium based on its morphological, physiological, biochemical and phylogenetic characteristics. We also tested XTS1.2.9 for its bioluminescence inhibition against different mutants lacking different quorum sensing autoinducers by using plate assays. The results showed that XTS1.2.9 inhibited the bioluminescence of the mutants having sensor 1, especially the one detecting CAI-1, and lacking sensor for AI-2; while it did not inhibit the mutants having only sensor for AI-2 and lacking sensor 1. Therefore, we propose an intra-genus quorum sensing inhibition mechanism involving CAI-1 to explain for such interactions between Vibrio parahaemolyticus and Vibrio harveyi. This phenomenon is reported for the first time and may have certain scientific and application implications.


Asunto(s)
Vibrio parahaemolyticus , Vibrio , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Filogenia , Percepción de Quorum/fisiología , Vibrio/genética , Vibrio parahaemolyticus/metabolismo , Vietnam
5.
Curr Microbiol ; 79(5): 140, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35316407

RESUMEN

Endophytes can generate a cornucopia of marvelous bioactive secondary metabolites useful for mankind but their biodiversity and associations with host plants are still elusive. In this study, we explored the culturable endophytic microorganisms associated with 14 medicinal plants that are of high socio-economic value and/or reportedly endemic to northern Vietnam. Specifically, we isolated the endophytic microorganisms by applying surface sterilization methods and identified them based on morphological and rDNA sequence analyses. Agglomerative Hierarchical Clustering (AHC) and Principal Component Analysis (PCA) were used to analyze the correlations between the taxonomic affiliations of the culturable endophytes and the characteristics of their hosts. Most of the culturable endophytes obtained were bacteria (80), and few of those were actinomycetes (15) and fungi (8). Many of them are reported to be endophytes of medicinal plants for the first time. A number of plants (5) are also reported for the first time to contain microbial endophytes, while some plants with powerful pharmaceutical potential harbor unique endophytes. Furthermore, our results reveal a strikingly close relation between the compositions of bacterial and fungal isolates from plants having anti-bacterial activity and those from plants having anti-inflammatory activity, or between the compositions of the microbial endophytic isolates from plants having anti-cancer activity and those from plants having antioxidant activity. Altogether, the results provide new findings which can be inspiring for further in-depth studies to explore and exploit the relationships between medicinal plants and their associated endophytes in northern Vietnam and world-wide.


Asunto(s)
Plantas Medicinales , Bacterias/genética , Endófitos , Hongos , Plantas Medicinales/microbiología , Vietnam
6.
Methods Mol Biol ; 2303: 341-347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626392

RESUMEN

Heparan sulfate (HS) plays numerous important roles in biological systems through their interactions with a wide array of proteins. Structural biology studies of heparan sulfate are often challenging due to the heterogeneity and complexity of the HS molecules. Radioisotope metabolic labeling of HS in cellular systems has enabled the elucidation of HS structures as well as the interactions between HS and proteins. However, radiolabeled structures are not amenable for advanced structural glycobiology studies using sophisticated instruments such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The utilization of stable isotope-enriched HS precursors is an appealing approach to overcome these challenges. The application of stable isotope-enriched HS precursors has facilitated the HS structural analysis by NMR spectroscopy and mass spectrometry. Herein we describe two simple methods to prepare isotopically enriched HS precursors and HS.


Asunto(s)
Heparitina Sulfato/química , Biología , Heparina , Isótopos , Espectroscopía de Resonancia Magnética , Proteínas
7.
Virusdisease ; 32(4): 797-803, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34189185

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes diarrhea in pigs leading to severe illnesses and high mortality rates. The development of medicinal agents to treat PEDV infection is therefore crucial. In this study, antiviral activities against PEDV of ethanol and aqueous extracts of 17 Vietnamese traditional medicinal plants were evaluated using the cytopathic effect-based assay. The results showed that 14 out of 17 medicinal plants could inhibit the cytopathic effect of PEDV. The ethanol extract of Stixis scandens was identified as the most active extract with its MIC (minimum inhibitory concentration) being 0.15 µg/mL. Other plant extracts also displayed strong antiviral activity against PEDV, including Anisomeles indica, Pericampylus glaucus and Croton kongensis. The results demonstrate that certain medicinal plants have a high antiviral potential and may serve as a lead to develop novel pharmaceutical agents to cure PED as well as the diseases caused by other coronaviruses.

8.
J Microbiol Biotechnol ; 30(7): 1005-1012, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32160701

RESUMEN

Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/ l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)- like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Sulfatos/metabolismo , Ácidos , Bacterias/clasificación , Biodegradación Ambiental , Desulfovibrio , Ecosistema , Microbiología Ambiental , Concentración de Iones de Hidrógeno , Metales Pesados , Minería , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
9.
ACS Chem Biol ; 10(6): 1485-94, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25742429

RESUMEN

The structural diversity of natural sulfated glycosaminoglycans (GAGs) presents major promise for discovery of chemical biology tools or therapeutic agents. Yet, few GAGs have been identified so far to exhibit this promise. We reasoned that a simple approach to identify such GAGs is to explore sequences containing rare residues, for example, 2-O-sulfonated glucuronic acid (GlcAp2S). Genetic algorithm-based computational docking and filtering suggested that GlcAp2S containing heparan sulfate (HS) may exhibit highly selective recognition of antithrombin, a key plasma clot regulator. HS containing only GlcAp2S and 2-N-sulfonated glucosamine residues, labeled as HS2S2S, was chemoenzymatically synthesized in just two steps and was found to preferentially bind antithrombin over heparin cofactor II, a closely related serpin. Likewise, HS2S2S directly inhibited thrombin but not factor Xa, a closely related protease. The results show that a HS containing rare GlcAp2S residues exhibits the unusual property of selective antithrombin activation and direct thrombin inhibition. More importantly, HS2S2S is also the first molecule to activate antithrombin nearly as well as the heparin pentasaccharide although being completely devoid of the critical 3-O-sulfonate group. Thus, this work shows that novel functions and mechanisms may be uncovered by studying rare GAG residues/sequences.


Asunto(s)
Antitrombinas/química , Ácido Glucurónico/química , Glicosaminoglicanos/química , Bibliotecas de Moléculas Pequeñas , Algoritmos , Sitios de Unión , Factor Xa/química , Cofactor II de Heparina/antagonistas & inhibidores , Cofactor II de Heparina/química , Heparitina Sulfato/química , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica
10.
Methods Mol Biol ; 1229: 11-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25325939

RESUMEN

Heparan sulfate (HS) polysaccharide chains have been shown to orchestrate distinct biological functions in several systems. Study of HS structure-function relations is, however, hampered due to the lack of availability of HS in sufficient quantities as well as the molecular heterogeneity of naturally occurring HS. Enzymatic synthesis of HS is an attractive alternative to the use of naturally occurring HS, as it reduces molecular heterogeneity, or a long and daunting chemical synthesis of HS. Heparosan, produced by E. coli K5 bacteria, has a structure similar to the unmodified HS backbone structure and can be used as a precursor in the enzymatic synthesis of HS-like polysaccharides. Here, we describe an enzymatic approach to synthesize several specifically sulfated HS polysaccharides for biological studies using the heparosan backbone and a combination of recombinant biosynthetic enzymes such as C5-epimerase and sulfotransferases.


Asunto(s)
Bioquímica/métodos , Enzimas/metabolismo , Heparina/síntesis química , Heparitina Sulfato/síntesis química , Animales , Cromatografía Líquida de Alta Presión , Disacáridos/metabolismo , Enzimas/aislamiento & purificación , Heparina/química , Heparitina Sulfato/química , Intercambio Iónico , Células Sf9 , Sulfotransferasas/metabolismo
11.
Methods Mol Biol ; 1229: 43-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25325943

RESUMEN

Heparan sulfate (HS) plays numerous important roles in biological systems through their interactions with a wide array of proteins. Structural biology studies of heparan sulfate are often challenging due to the heterogeneity and complexity of the HS molecules. Radioisotope metabolic labeling of HS in cellular systems has enabled the elucidation of HS structures as well as the interactions between HS and proteins. However, radiolabeled structures are not amenable for advanced structural glycobiology studies using sophisticated instruments such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The utilization of stable isotope-enriched HS precursors is an appealing approach to overcome these challenges. The application of stable isotope-enriched HS precursors has facilitated the HS structural analysis by NMR spectroscopy and mass spectrometry. Herein we describe a simple method to prepare isotopically enriched HS precursors.


Asunto(s)
Heparitina Sulfato/química , Heparitina Sulfato/síntesis química , Marcaje Isotópico/métodos , Conformación de Carbohidratos , Isótopos de Carbono , Células Cultivadas , Isótopos de Nitrógeno , Radioisótopos de Azufre/metabolismo , Tritio/metabolismo
12.
Mol Biosyst ; 8(2): 609-14, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22116385

RESUMEN

Heparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST1 has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2, 3-OST3, 3-OST4 and 3OST-6 have been shown to play a vital role in generating gD-binding HS chains that permit the entry of herpes simplex virus type 1 into cells. 3-OST5 has been found to generate both ATIII- and gD-binding HS motifs. Previous studies have examined the substrate specificities of all the 3-OST isoforms using HS polysaccharides. However, very few studies have examined the contribution of the epimer configuration of neighboring uronic acid residues next to the target site to 3-OST action. In this study, we utilized a well-defined synthetic oligosaccharide library to examine the substrate specificity of 3-OST3a and compared it to 3-OST1. We found that both 3-OST1 and 3-OST3a preferentially sulfate the 6-O-sulfated, N-sulfoglucosamine when an adjacent iduronyl residue is located to its reducing side. On the other hand, 2-O-sulfation of this uronyl residue can inhibit the action of 3-OST3a on the target residue. The results reveal novel substrate sites for the enzyme actions of 3-OST3a. It is also evident that both these enzymes have promiscuous and overlapping actions that are differentially regulated by iduronyl 2-O-sulfation.


Asunto(s)
Heparitina Sulfato/metabolismo , Bibliotecas de Moléculas Pequeñas , Sulfotransferasas/metabolismo , Heparitina Sulfato/química , Isoenzimas/química , Isoenzimas/metabolismo , Oligosacáridos/metabolismo , Especificidad por Sustrato
13.
FEBS Lett ; 585(21): 3420-3, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21983289

RESUMEN

Several biologically important growth factor-heparan sulfate (HS) interactions are regulated by HS sulfation patterns. However, the biogenesis of these combinatorial sulfation patterns is largely unknown. N-Deacetylase/N-sulfotrasferase (NDST) converts N-acetyl-d-glucosamine residues to N-sulfo-d-glucosamine residues. This enzyme is suggested to be a gateway enzyme because N-sulfation dictates the final HS sulfation pattern. It is known that O-sulfation blocks C5-epimerase, which acts immediately after NDST action. However, it is still unknown whether O-sulfation inhibits NDST action in a similar manner. In this article we radically change conventional assumptions regarding HS biosynthesis by providing in vitro evidence that N-sulfation is not necessarily just a gateway modification during HS biosynthesis.


Asunto(s)
Heparitina Sulfato/biosíntesis , Sulfatos/metabolismo , Acetilación , Animales , Sitios de Unión , Bovinos , Flavobacterium/enzimología , Sulfotransferasas/química , Sulfotransferasas/metabolismo
14.
FEBS Lett ; 585(17): 2698-702, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21803043

RESUMEN

Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural requirements of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a sequential or concurrent manner to elucidate the potential mechanism by which the FGF1-binding HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1/FGFR when enzymes carry out modifications in a specific manner.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Secuencia de Carbohidratos , Ensayo de Cambio de Movilidad Electroforética , Factor 1 de Crecimiento de Fibroblastos/química , Heparitina Sulfato/química , Espectrometría de Masas , Datos de Secuencia Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
15.
Anal Bioanal Chem ; 401(1): 237-44, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21573838

RESUMEN

Heparan sulfate (HS) proteoglycans regulate a number of biological functions in many systems. Most of the functions of HS are attributed to its unique structure, consisting of sulfated and non-sulfated domains, arising from the differential presence of iduronyl and glucuronyl residues along the polysaccharide chain. A single glucuronyl C5-epimerase enzyme acts on HS precursors, converts glucuronyl residues into iduronyl residues, and modulates subsequent biosynthetic steps in vivo. Previously, the ratios of non-sulfated epimers within the polysaccharide chain have been calculated by resolving radiolabeled GlcA-(A)Man(R) and IdoA-(A)Man(R) disaccharides using a tedious paper chromatography technique. This radioactive assay, based on measuring either the release or incorporation of (3)H at C5 carbon of uronyl residues of (3)H-labeled HS precursor substrate, has been in use over three decades to characterize the action of HS C5-epimerase. We have developed a non-radioactive assay to estimate the epimerase activity through resolving GlcA-(A)Man(R) and IdoA-(A)Man(R) disaccharides on high-performance liquid chromatography in conjunction with hydrogen/deuterium exchange upon epimerization protocol-liquid chromatography mass spectrometry (DEEP-LC-MS). Utilizing this new, non-radioactive-based assay, DEEP-LC-MS, we were able to determine the extent of both forward and reverse reactions on the same substrate catalyzed by C5-epimerase. The results from this study also provide insights into the action of C5-epimerase and provide an opportunity to delineate snapshots of biosynthetic events that occur during the HSPG assembly in the Golgi.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Heparitina Sulfato/metabolismo , Espectrometría de Masas/métodos , Animales , Línea Celular , Cromatografía Liquida/métodos , Deuterio , Medición de Intercambio de Deuterio/métodos , Disacáridos/aislamiento & purificación , Heparina/metabolismo , Hidrógeno , Insectos/enzimología , Proteoglicanos/metabolismo
16.
Biochem Biophys Res Commun ; 404(1): 86-9, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21094131

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are essential players in several steps of tumor-associated angiogenesis. As co-receptors for several pro-angiogenic factors such as VEGF and FGF, HSPGs regulate receptor-ligand interactions and play a vital role in signal transduction. Previously, we have employed an enzymatic strategy to show the importance of cell surface HSPGs in endothelial tube formation in vitro. We have recently found several fluoro-xylosides that can selectively inhibit proteoglycan synthesis in endothelial cells. The current study demonstrates that these fluoro-xylosides are effective inhibitors of endothelial tube formation in vitro using a matrigel based assay to simulate tumor-associated angiogenesis. These first generation scaffolds offer a promising stepping-stone to the discovery of more potent fluoro-xylosides that can effectively neutralize tumor growth.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Glicósidos/farmacología , Proteoglicanos de Heparán Sulfato/antagonistas & inhibidores , Neoplasias/irrigación sanguínea , Neovascularización Patológica/metabolismo , Inhibidores de la Angiogénesis/química , Animales , Bovinos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glicósidos/química , Proteoglicanos de Heparán Sulfato/metabolismo , Microvasos/efectos de los fármacos , Microvasos/metabolismo
17.
Bioorg Med Chem Lett ; 20(24): 7269-73, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21074423

RESUMEN

Various 4-deoxy-4-fluoro-xylosides were prepared using click chemistry for evaluating their potential utility as inhibitors of glycosaminoglycan biosynthesis. 2,3-Di-O-benzoyl-4-deoxy-4-fluoro-ß-D-xylopyranosylazide, obtained from L-arabinopyranose by six steps, was treated with a wide variety of azide-reactive triple bond-containing hydrophobic agents in the presence of Cu(2+) salt/ascorbic acid, a step known as click chemistry. After click chemistry, benzoylated derivatives were deprotected under Zemplén conditions to obtain 4-deoxy-4-fluoro-xyloside derivatives. A mixture of α:ß-isomers of twelve derivatives were then separated on a reverse phase C18 column using HPLC and the resulting twenty four 4-deoxy-4-fluoro-xylosides were evaluated for their ability to inhibit glycosaminoglycan biosynthesis in endothelial cells. We identified two xyloside derivatives that selectively inhibit heparan sulfate and chondroitin sulfate/derman sulfate biosynthesis without affecting cell viability. These novel derivatives can potentially be used to define the biological actions of proteoglycans in model organisms and also as therapeutic agents to combat various human diseases in which glycosaminoglycans participate.


Asunto(s)
Glicosaminoglicanos/biosíntesis , Glicósidos/química , Animales , Azidas/química , Catálisis , Bovinos , Sulfatos de Condroitina/antagonistas & inhibidores , Sulfatos de Condroitina/biosíntesis , Química Clic , Cobre/química , Células Endoteliales/citología , Glicosaminoglicanos/antagonistas & inhibidores , Glicósidos/síntesis química , Glicósidos/farmacología , Heparitina Sulfato/antagonistas & inhibidores , Heparitina Sulfato/biosíntesis , Isomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...